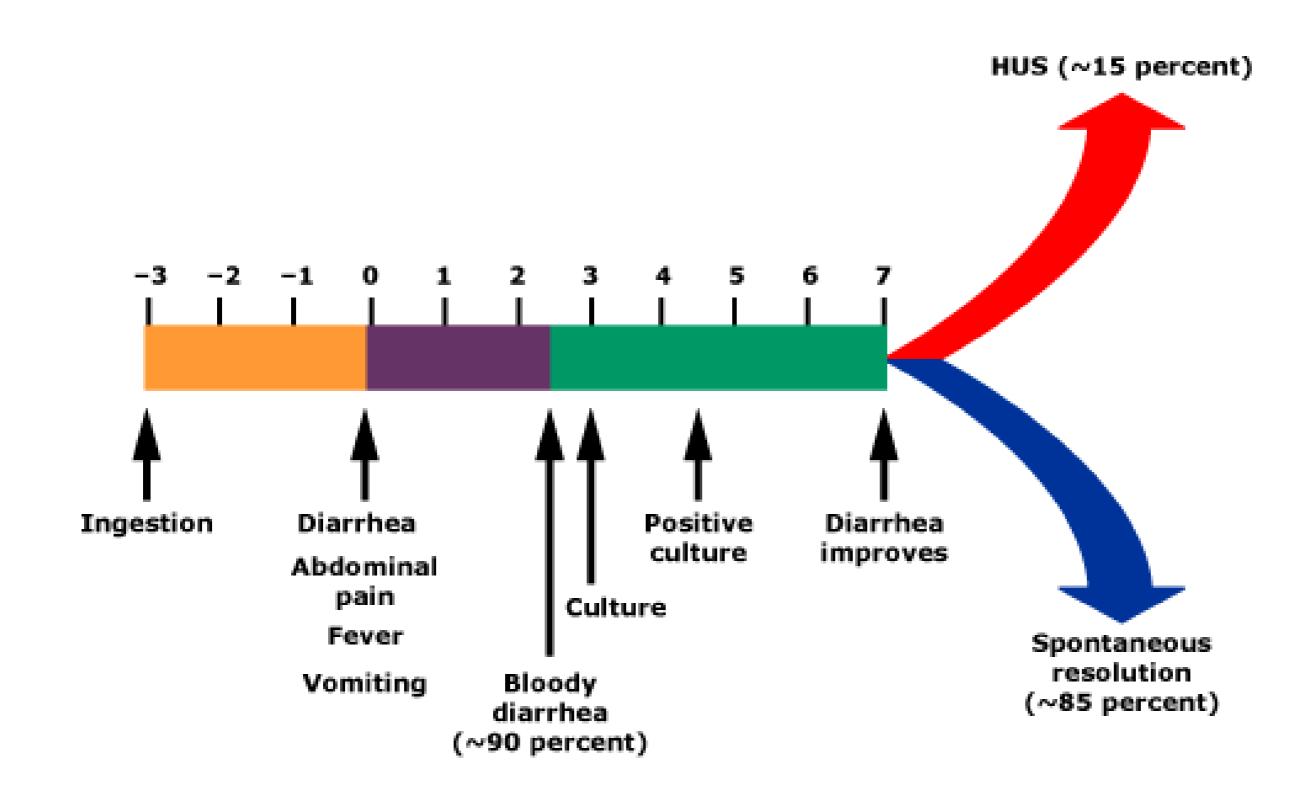
E/S/R Science for Communities

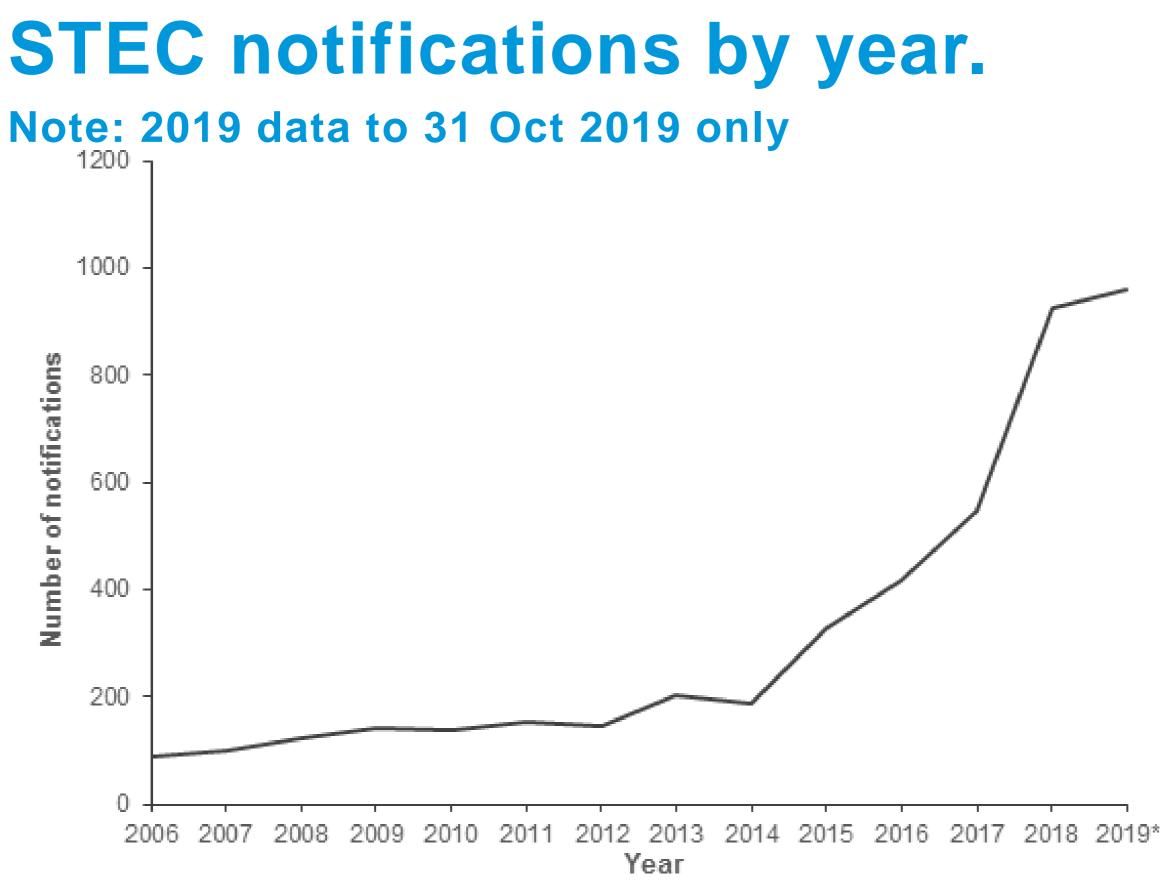
Ki uta ki tai - from the mountains to the sea

- Recognise and manage the interconnectedness of the whole environment
- Acknowledging the connections between:
- people and communities,
- people and the land,
- people and water.

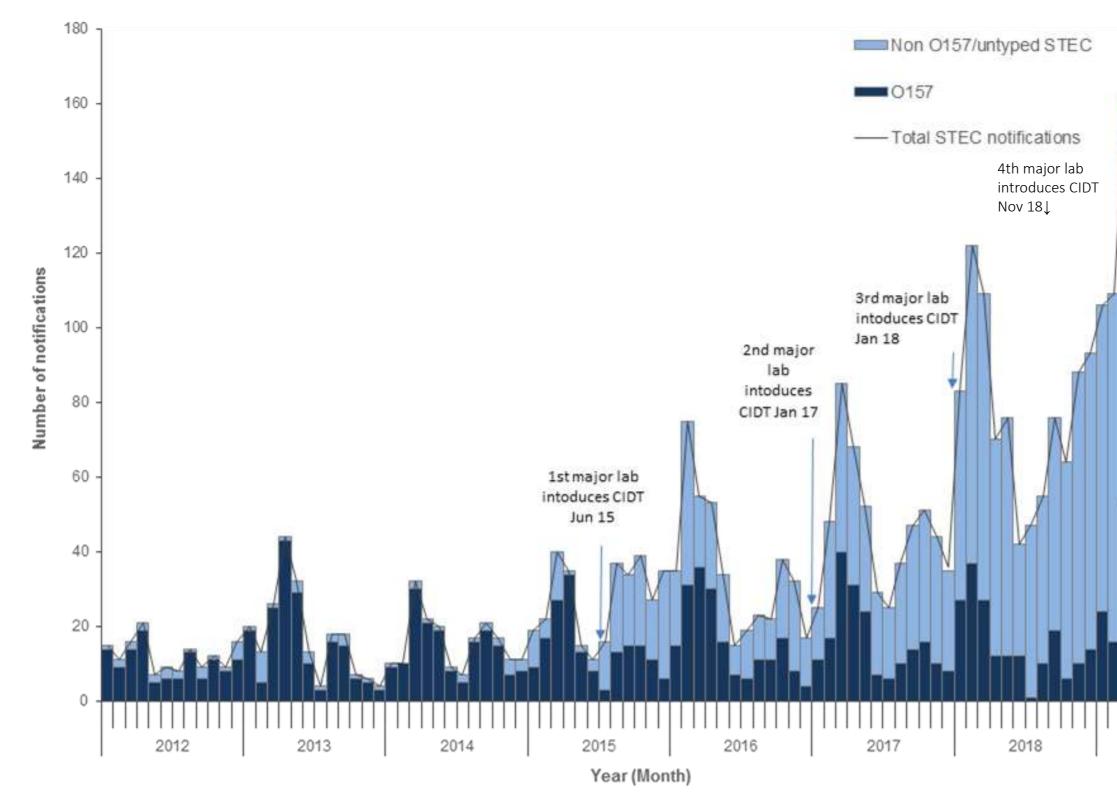
Escherichia coli


- Normal bowel flora
- Protective \bullet
- Causative agent of urinary tract infections, biliary infections ullet(cholecystitis/cholangitis) and septicaemia
- AMR emergence
- virulence factors allow good bowel bugs to become bad bowel bugs
- EIEC, EPEC, ETEC, EAEC, DAEC

VTEC AKA STEC


- Verocytotoxin producing *E coli* = Shiga toxin producing *E coli*
- stx1 and / or stx2
- O157 sorbitol non fermenter, tellurite and cefixime resistant
- And the rest: up to 187 different O types which are mainly sorbitol fermenting and not so tellurite resistant making them more difficult to find

Actually more like 2% in NZ



Source: EpiSurv 18 November 2019

STEC notifications by month and year, Jan 2012 to Oct 2019

2019

(Source: EpiSurv 18 November 2019)

FAO/WHO STEC Expert Group

- Complex pathogenicity
- Adherance essential for pathogenicity
- Serotype does not predict pathotype
- Host factors play a significant role
- Order of significance:
- *stx*2a + *eae* or *agg*R
- *stx*2d + *eae*
- *stx*2c + *eae*
- *stx*1a + *eae*
- rest

US Top 7 vs EU Top 6

US Top 7 eae +	EU Top 6 <i>eae/aaiC /agg</i> R
0157	0157
026	026
O45	
0103	0103
0111	0111
0121	O104:H4
0145	0145

"Serotype does not predict pathotype".....

Which serotypes elsewhere?

- O146 emerging in Japan
- O91 emerging in Argentina
- O55 emerging in Britain •
- Many types associated with serious illness
- Danish have seen 117 different VTEC serotypes in the last 17 years \bullet
- Emergence worldwide of stx2 +ve O26
- Emergence of hybrid strains ETEC + VTEC

The most common STEC O types confirmed in NZ human clinical samples in 2018 were:

Serotype	Stx1	Stx2	ea
O157:H7	+/- 1a	+/- 2a or 2c	
O26:H11	+/- 1a	+/- 2a	
O128:H2	+/- 1c	+/- 2b	
O146:H21 or H28	-	+ 2b	
O38:H26	+ 1c	+/- 2b	
O123/186:H2 or H10	+/- 1c	+/- 2b	
O103:H2 or H25	+ 1a	+/- 2c	
O174:H8	+ 1c	+/- 2b	
O176:H4	+ 1c	+/- 2b	
O91:H14 or H21	+/- 1a	+/- 2b	

10

+

+

_

╋

+/- = variable – positives and negatives seen Purple = US Top 7/ EU Top 6

Note: *agg*R and *aai*C not noted in NZ isolates to-date

NZ Haemorrhagic Colitis cases January 2016 – October 2019

O types represented	Stx1	Stx2	eae	total
0157, 0165	+	+	+	108
0157, 026, ONT	-	+	+	278
0103, 0111, 0123/186, 0145, 0152, 0153, 0157, 0182, 026, 045, 05, 084, 085, 087, ONT	+	-	+	81
O12, O128, O130 O176, O123/186, O38, O80, O91, ONT	+	+	-	30
O113, O128 , O130, O146 , O153, O158, O163, O171, O64, O8, O91, Onovel32, ONT	-	+	-	36
O104, O117, <mark>O128, O174, O176</mark> , O187, <mark>O38</mark> , O78, O88, ONT	+	-	-	16

Red = NZ top 10 only, Purple = NZ top 10 and US or EU Top 6/7, Green = US or EU Top 6/7 only NT = Organism isolated in pure culture but not able to be O typed by phenotypic methods

NZ STEC-associated Haemolytic Uraemic Syndrome January 2016 – October 2019

- 59 cases
- Age range 9 months 89 years
- 42 cases < 16 years old (ie 29% adults)
- STEC isolate confirmed in 47 cases
- **O157:H7** n = 33
- **O26:11** n = 8
- 0130:H11 n = 2
- 038:H26, 091:H21, 0128:H2, 0171:H2 1 case each

Red = NZ top 10 only, Purple = NZ top 10 and US or EU Top 6/7, Black = relatively uncommon in NZ (based on current information)

STEC associated with HUS NZ January 2016 – October 2019

+

+

+

+

	Serotype	Stx1	Stx2	eae
	O157:H7 n = 30	-	2 a	
	O157:H7 n = 2	1 a	2 a	
	O157:H7 n = 1	_	2 c	
<	O26:H11 n = 7	-	2 a	
	O26:H11 n = 1	1a	_	
	O130:H11 n = 2	-	2 a	
	O128:H2 n = 1	1c	2b	
	O38:H26	1c	2b	
	O171:H2	-	2 c	
	O91:H21	_	2 a	

FAO/WHO STEC Expert Group

Order of significance: Stx2a + eae or aggR Stx2d + eae Stx2c + eae stx1a + eae rest

STEC sources and vehicles

- Large ruminants
- Small ruminants
- Undercooked mincemeat
- Water
- Flies
- Cider (likes a low pH)
- Flour
- Leafy vegetables
- Sexual transmission

NZ 2000

Table 2 Source, serotype, Stx/stx type and enter

 (Ehly) production in Shiga toxin-producing Escherichi

 isolated from retail meat

Source of STEC	Serotype	Stx/stx
of STEC	Serotype	512/312
Beef:		
mince	O128:H2	$stx_1 stx_2$
mince	O128:H2	$stx_1 stx_2$
mince	Ont:H21	stx_2
mince	O128.H2	$stx_1 stx_2$
stir-fry	O144.H2	$stx_1 stx_2$
pet-food	O27:H21	stx_2
hamburger	Ont.H-	$stx_1 stx_2$
hamburger	O8:H-	stx_2
hamburger	O15:H27	$stx_1 stx_2$
hamburger	O81:H26	stx1
Lamb		
steak	O91.H-	$stx_1 stx_2$
stir-fry	O171.H2	stx_2
steak	Ont.H4	stx_2
mince	O128:H-	$stx_1 stx_2$
mince	O81:H26	$stx_1 stx_2$
mince	O5: H–	stx1

H.J.L. Brooks B.D. Mollison K.A. Bettelheim K. Matejka K.A. Paterson VK. Ward. Occurrence and virulence factors of non-O157 Shiga toxin-producing *Escherichia coli* in retail meat in Dunedin, New Zealand Letters in Applied Microbiology 2001,32, 118-22

NZ 2006

- 21 different STEC serotypes were detected
- Cattle: O5:H–, O9:H51, O26:H11, O84:H–/H2 and O149:H8
- Sheep: O26:H11, O65:H–, O75:H8, O84:H–, O91:H–, O128:H2 and O174:H8
- If nationally representative, this study confirms that cattle and sheep in New Zealand ulletmay be a major reservoir of STEC serotypes that have been recognised as causative agents of diarrhoeal disease in humans.

Cookson, AL; Taylor, SCS; Bennett, J; Thomson-Carter, F; Attwood, GT

Serotypes and analysis of distribution of Shiga toxin-producing Escherichia coli from cattle and sheep in the lower North Island, New Zealand New Zealand Veterinary Journal, Volume 54, Number 2, April 2006, pp. 78-84(7)

NZ 2011-12

- National prospective case—control study from July 2011 to July 2012 \bullet
- 113 eligible cases and 506 controls were analysed \bullet
- Environmental and animal contact, but not food, = significant exposure pathways \bullet

A prospective case-control and molecular epidemiological study of human cases of Shiga toxin-producing Escherichia coli in New Zealand. Jaros et al. BMC Infectious Diseases 2013, 13:450 http://www.biomedcentral.com/1471-2334/13/450

What we do know for NZ

- Cows and sheep known reservoirs
- Large range of sero and toxin types associated with clinical disease including serious presentations
- Organisms present in surface water
- Surface pathogens have potential to enter ground water (Havelock North) \bullet

What can we do right now

- Limit spread from known reservoirs to known vehicles in the environment \bullet
- Riparian planting of rural streams and waterways
- Work together to extend our collective NZ knowledge beyond the US/EU Top 7 to \bullet identify all reservoirs, vectors and transmission pathways to develop strategies to interrupt the infection path and improve personal and public health

What we don't know for NZ

- Carriage rates in other animal sources including rodents
- Asymptomatic carriage rates in humans in NZ
- Role of person-person spread
- Role of irrigation water from surface sources
- Insects
- Birds
- Additional pathways from source to human

Acknowledgements

- The wider ESR team Enteric Reference, Intelligence for Action, Bioinformatics, Environmental health.
- Ministry of Health who financially supports the work we do with STEC \bullet
- NZ clinical laboratories for referral of cultures \bullet

Jackie Wright on behalf of ESR

T: 04 529 0607 E: Jackie.wright@esr.cri.nz