

How much of an issue is microbial contamination of our water? What's the sources of contamination of our water? How are we trying to keep our water safe for drinking and recreation?

One Health

Brent Gilpin brent.gilpin@esr.cri.nz 11 December 2019

## Waterborne Pathogens

## Viruses

- Norovirus
- Enteroviruses

   Polioviruses,
   Echoviruses
   Coxsackievirus
  - -Coxsackieviruses A & B
- Hepatitis A & E Viruses
- Adenoviruses
- Reoviruses
- Rotaviruses
- Caliciviruses
- Astroviruses
- Picornavirus/parvov iruses
- Coronaviruses





## Bacteria

- Salmonellae
- Shigella spp.
- Campylobacter spp.
- Yersinia enterocolytica
- Escherichia coli
- Vibrio cholerae
- Aeromonas spp.
- Helicobacter pylori
- Legionellosis
- Leptospirosis

### Protozoa

- Giardia intestinalis
- Cryptosporidium
  parvum
- Entamoeba histolytica
- Toxoplasma gondii
- Microsporidia
- Naegleria fowleri



#### HOW MUCH OF AN ISSUE IS MICROBIAL CONTAMINATION OF OUR WATER?

WATER AND HEALTH (T WADE, SECTION EDITOR)

#### **Recreational Water and Infection: A Review of Recent Findings**

#### Lorna Fewtrell • David Kay

| Study              | Area       | Water type | Participants | Risk of GI illness (95% CI) |
|--------------------|------------|------------|--------------|-----------------------------|
| Dorevitch (CHEERS) | Chicago    | Freshwater | 10,747       | 1.46 (1.08-1.96)            |
| Marion             | Ohio       | Freshwater | 965          | 3.2 (1.1-9.0)               |
| Arnold             | California | Marine     | 5,454        | 1.9 (1.17-3.06)             |
| Colford            | California | Marine     | 9,525        | 1.38 (1.03-1.86)            |
| Papastergiou       | Greece     | Marine     | 4,367        | 3.6 (1.28-10.13)            |
| Harder-Lauridsen   | Copenhagen | Marine     | 838          | 5.0 (4.0-6.39)              |
| Wade (NEEAR)       | USA        | Marine     | 6,331        | 2.56 (1.29-5.11)            |

### 2012 Hampton Court Swim

#### 2.25 miles river swim in Thames River

Hampton Court Bridge downstream to Kingston Bridge

1,100 swimmers 1 hospitalised Facebook page 40 swimmers reported illness 636 valid surveys, 338 illness Attack rate >31%

Sewage overflow? Gastrointestinal virus?

HALL, V., TAYE, A., WALSH, B., MAGUIRE, H., DAVE, J., WRIGHT, A., . . . CROOK, P. (2017). A large outbreak of gastrointestinal illness at an open-water swimming event in the River Thames, London. *Epidemiology and Infection, 145*(6), 1246-1255.



DeFlorio-Barker et al. Environmental Health (2018) 17:3 DOI 10.1186/s12940-017-0347-9

#### **Environmental Health**

#### RESEARCH

#### **Open Access**



# Estimate of incidence and cost of recreational waterborne illness on United States surface waters

Stephanie DeFlorio-Barker<sup>1\*</sup>, Coady Wing<sup>2</sup>, Rachael M. Jones<sup>1</sup> and Samuel Dorevitch<sup>1,3</sup>

|                   | USA           |
|-------------------|---------------|
| Population        | 329,245,000   |
| Recreation Events | 4 billion     |
| Annual illness    | 90 million    |
| Costs             | US\$3 billion |

DeFlorio-Barker et al. Environmental Health (2018) 17:3 DOI 10.1186/s12940-017-0347-9

#### **Environmental Health**

#### RESEARCH

**Open Access** 



# Estimate of incidence and cost of recreational waterborne illness on United States surface waters

Stephanie DeFlorio-Barker<sup>1\*</sup>, Coady Wing<sup>2</sup>, Rachael M. Jones<sup>1</sup> and Samuel Dorevitch<sup>1,3</sup>

|                   | USA           | NZ ?              |
|-------------------|---------------|-------------------|
| Population        | 329,245,000   | 4,780,000 ?       |
| Recreation Events | 4 billion     | 58 million ?      |
| Annual illness    | 90 million    | 1.3 million ?     |
| Costs             | US\$3 billion | NZ \$65 million ? |

### Notified Diseases in New Zealand (Selected)

| Disease                    | 2018 Cases | Rate per 100 000 |  |
|----------------------------|------------|------------------|--|
| Campylobacteriosis         | 6,957      | 142.4            |  |
| Cryptosporidiosis          | 1,611      | 33               |  |
| Giardiasis                 | 1,585      | 32.4             |  |
| Legionellosis              | 212        | 4.3              |  |
| Leptospirosis              | 116        | 2.4              |  |
| Listeriosis                | 30         | 0.6              |  |
| Salmonellosis              | 1,100      | 22.5             |  |
| Shigellosis                | 220        | 4.5              |  |
| <b>VTEC/STEC</b> infection | 926        | 19               |  |
| Yersiniosis                | 1,208      | 24.7             |  |

**Higher reported recreational water contact** 

www.surv.esr.cri.nz

## Documented waterborne outbreaks in New Zealand, with probable links to drinking water, 2005–2016

| Year | Incident                                  | Causal agent                 | Cases     |          |
|------|-------------------------------------------|------------------------------|-----------|----------|
|      |                                           |                              | Confirmed | Probable |
| 2005 | Bridge Valley camp                        | Campylobacter                | 3         | 10       |
| 2005 | Hawke's Bay school camp                   | Campylobacter                | 6         | 34       |
| 2005 | Med student camp, Canterbury              | Campylobacter                | 13        | 21       |
| 2005 | Otago bowling tournament                  | Campylobacter                | 8         | 13       |
| 2006 | Cardrona Skifield                         | Norovirus                    | 218       |          |
| 2006 | School camp, Te Kuiti                     | Campylobacter                | 2         | 20       |
| 2007 | School camp, Wellington                   | Gastro – unknown cause       | 96        |          |
| 2007 | Northland school                          | Gastro – viral unknown cause | 17        |          |
| 2008 | Springston                                | Campylobacter                | 5         | 39       |
| 2008 | South Canterbury youth camp               | Campylobacter                | 2         | 13       |
| 2010 | Golden Bay Holiday Park                   | Norovirus                    |           |          |
| 2010 | Waiouru Commanders' Course                | Campylobacter                | 1         | 15       |
| 2011 | Runanga drinking-water supply             | Campylobacter                | 4         |          |
| 2012 | Darfield drinking-water supply            | Campylobacter                | 29        | 138      |
| 2012 | Hawke's Bay camping ground drinking-water | Campylobacter                | 28        |          |
| 2012 | Cardrona Hotel and water supplies         | Norovirus                    | 48        | 5        |
| 2013 | Nelson Lakes Scout camp                   | Gastro – unknown cause       |           | 13       |
| 2016 | Havelock North                            | Campylobacter                | 967       | 5,500    |



Then, came the onslaught of vomiting and diarrhoea.

#### Darfield 2012 outbreak



and Brent Gilpin

#### Darfield Water Supply 2012





#### August 2016





### Illness Onset of notified cases in Hawkes Bay



### Sources of faecal contamination

Pet feces

Failing septic systems

XX

Runoff from impervious surfaces Wildlife feces

Wastewater Treatment Plant

Seagull and goose droppings

Swimmers

Combined sewer overflows

Vessel sewage discharges

microbialinsights

https://www.microbe.com/microbial-source-tracking/



### **Recreational water quality guidelines**

- National survey of microbiological water quality 1998-2000
  - 725 samples, 25 sites, 10 microorganisms
- NZ guidelines based on quantitative microbial risk assessment (QMRA) for campylobacteriosis

E. coli concentrations associated with Campylobacter infection estimated → numeric limits

| <0.1% infection | <130 <i>E. coli</i> MPN/100 m |
|-----------------|-------------------------------|
| 1% infection    | 260 <i>E. coli</i> MPN/100 ml |
| 5% infection    | 550 <i>E. coli</i> MPN/100 ml |



Till et al. 2008, J. Water Health 6, 443-46

#### **Faecal Source Tracking**





1,615 Samples Analysed

## Contamination sources identified in water samples







Probability of gastrointestinal illness from ingestion of water containing fresh faecal pollution at densities of and 126 cfu 100 mL<sup>-1</sup> *E. coli* 



Estimated human health risks from exposure to recreational waters impacted by human and non-human sources of faecal contamination %

Jeffrey A. Soller<sup>a,\*</sup>, Mary E. Schoen<sup>b</sup>, Timothy Bartrand<sup>c</sup>, John E. Ravenscroft<sup>d</sup>, Nicholas J. Ashbolt<sup>b</sup>

# WHAT ARE/CAN WE DO TO KEEP OUR WATER SAFE?



Incorporated into Policy

## Action for healthy waterways

- Te Mana o te Wai
- New attributes National Policy Statement (NPS)
  - Nutrients, sediments, fish/macroinvertebrates, macrophytes, Oxygen
- No more draining of wetlands, no more piping streams
- Minimum standards wastewater discharges
- All farmers need farm plan by 2025
- No new irrigation or dairy conversions
- Reduce nitrate/nitrogen levels
- 5 m fencing waterways
- Controls intensive winter grazing and feedlots.
- New freshwater QMRA



## The Havelock North Water Inquiry



The Havelock North water inquiry panel Dr Karen Poutasi, left, Lyn Stevens QC and Anthony Wilson

https://www.nzherald.co.nz/thecountry/news/article.cfm?c id=16&objectid=11900132







REPORT OF THE HAVELOCK NORTH DRINKING WATER INQUIRY: STAGE 1

**DRINKING WATER INQUIRY: STAGE 2** 

MAY 2017

DECEMBER 2017

### The Havelock North Water Inquiry Recommendations

- Abolish the Secure Classification System
- Encourage Universal Treatment
- Establish a Drinking Water Regulator
- Amend RMA, Health Act, Accelerate NES Regulations Review
- Establish a Licensing and Qualifications System for Drinking Water Suppliers and Operators
- Review and Strengthen Enforcement of Water safety plans
- Improve the Testing and Laboratories Regime
- Prohibit New Below-ground Bore Heads

## Ministry of Health

- Changes to the Drinking Water Standards
  - Requirement for total coliforms in addition to *E. coli*.
  - Removal of presence/absence testing (must be quantitative)
  - Change to chlorine contact times, log credits
- Health Act 31 July 2019
  - Remove requirement to consult 3 years, gazette 2 years
  - Remove all practical steps
  - Water Safety Plans must include timetables
  - Streamline process for appointment of drinking water assessors
  - Raise public health to be equal or greater requirement than affordability

## Three Waters Review (DIA)

- Improve the regulation and supply arrangements of drinking water, wastewater and stormwater
- A new regulatory framework for drinking water will include:
  - an extension of the regulatory coverage to all drinking water suppliers, except individual household selfsuppliers;
  - a multi-barrier approach to drinking water safety, including mandatory disinfection of water supplies, with exemptions only in appropriate circumstances;
  - stronger obligations on water suppliers and local authorities to manage risks to sources of drinking water;
  - strengthened compliance, monitoring and enforcement of drinking water regulation.
- While regional councils will remain the primary regulators for the environment, there will be stronger central oversight of wastewater and stormwater regulation, including:
  - requirements for wastewater and stormwater operators to report annually on a set of national environmental performance measures;
  - national good practice guidelines for the design and management of wastewater and stormwater networks; and
  - monitoring of emerging contaminants in wastewater and stormwater, and coordinating national responses where necessary.
- New drinking water regulator

### OneHealth Opportunities...

- Ongoing Research Need
  - Evidence base for policy and ongoing evaluation of effectiveness
  - Understand sources and transmission pathway of micro-organisms
  - Transition to *E. coli* PLUS
- Document and investigate disease incidence
  - Learn (and relearn) how contamination occurs
  - Raise awareness to ensure importance is recognised
- Recognise and respond to change

#### Acknowledgements



- New Zealand Ministry of Health, and Ministry for Primary Industries.
- MBIE Strategic Science Investment Fund & Health Research Council of New Zealand
- New Zealand Public Health Unit staff, and clinical laboratories across New Zealand
- ESR Health Intelligence, Epidemiology and Data and Informatics teams: Sarah Jefferies, Shevaun Paine, Jill Sherwood, Andrea McNeill, Yvonne Galloway, Dean Reyneke, Claire Newbern, Tim Wood, Michael Addidle, Liza Lopez, Charlotte Gilkison, Giles Graham, Pauline Quinn, Andrew Crooke, Dwyllis Maggs, Ben Waite, Mehnaz Adnan, Ian Tompson, Tiffany Walker, Graham Mackereth, Tammy Hambling, Chris Hewison,
- ESR Enteric Reference Laboratory: Jackie Wright, Hugo Stydom, Karen Cullen, Penelope Hancock, David Duncan, Kirti Deo, Angela Brounts,
- Christchurch ESR: Maurice Wilson, Paula Scholes, Beth Robson, Susan Lin, Angela Cornelius, Lucia Rivas, Una Ren, Marilyn Piercy, Chris Nokes, Brent Gilpin
- Sequencing Laboratory and Bioinformatics teams: Joep de Ligt, Una Ren, Hermes Perez, Jing Wang, Yoryea Mantziou, Cat Edwards, Daniel Hudson, Naveena Karki
- Massey University: David Hayman, Nigel French, Ji Zhang, David Wilkinson, Anne Midwinter, Patrick Biggs
- Hawkes Bay DHB: Nicholas Jones, Rachel Eyre and team
- Hawkes Bay Regional Council, Hastings District Council, Tonkin & Taylor

#### ESR Water & Wastewater Science & Research

Drinki

Water for food

Biowaste

Recreational water

Groundwater

Stromwater

Thankvou

#### E/S/R Science for Communities

### Clean, safe water for everyone, everywhere

Human Health Mātauranga Māori Contaminants Risks Solutions

# Outbreaks due to contamination surface water sources

| Year of  | Location              | Pathogens               | Cases     | Total Cases                | Comments                          |
|----------|-----------------------|-------------------------|-----------|----------------------------|-----------------------------------|
| Outbreak |                       |                         | Confirmed | Estimated                  |                                   |
| 2001     | North Battleford, SK, | Cryptosporidium parvum  | 375       | 5,800-7,100                |                                   |
|          | Canada                | type 1                  |           | 50 hospitalised            | Sewage discharges                 |
| 2010     | Östersund, Sweden     | Cryptosporidium         | >29       | 27,000<br>270 hospitalised | upstream drinking<br>water intake |
| 2011     | Sweden                | Cryptosporidium hominis |           | 18,500                     |                                   |
| 2002     | Spain                 | Shigella sonnei         | 181       | 756                        | Heavy rainfall                    |
| 2004     | Norway                | Giardia                 | 1,300     | 4,000-6,000                | Lake                              |
| 2008     | Sweden                | Norovirus               | 33        | 2,400                      | Heavy rainfall                    |
| 2013     | Oregon, USA           | Cryptosporidium         | 23        | 2,780                      | Heavy rainfall                    |

S. E. Hrudey, E. J. Hrudey; Common themes contributing to recent drinking water disease outbreaks in affluent nations. *Water Supply* 1 September 2019; 19 (6): 1767–1777. Treatment Failures

# Outbreaks due to contamination ground water sources

| Year    | Location       | Pathogens        | Cases     | Total Cases | Comments              |
|---------|----------------|------------------|-----------|-------------|-----------------------|
|         |                |                  | Confirmed | Estimated   |                       |
| 2000    | Walkerton, ON, | Escherichia coli | 163 (E)   | 2,300       | Cattle manure         |
|         | Canada         | O157:H7,         | 105 (C)   | 27 HUS      | Rainfall              |
|         |                | Campylobacter    | 12 both   | 7 deaths    | Treatment failure     |
| 2000–01 | Asikkala,      | Campylobacter    | 71        | 1450        | Rainfall              |
|         | Finland        | jejuni           |           |             | No treatment          |
| 2002    | Transtrand,    | Norovirus        | 4         | ~500        | Leaking sewer pipe No |
|         | Sweden         |                  |           |             | treatment             |
| 2009    | Tune, Denmark  | Campylobacter    |           | ~770        | Heavy rainfall        |
|         |                | jejuni           |           |             | ricavyrannan          |
| 2010    | Koge, Denmark  | Campylobacter    | 61        | ~400        | Heavy rainfall        |
|         |                | jejuni           |           |             |                       |

S. E. Hrudey, E. J. Hrudey; Common themes contributing to recent drinking water disease outbreaks in affluent nations. *Water Supply* 1 September 2019; 19 (6): 1767–1777.

### Outbreaks due to contamination in reticulation

| Year | Location                 | Pathogens                                                                                      | Cases<br>Confirmed | Cases<br>Estimated  | Comments                                         |
|------|--------------------------|------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------------------------------------|
| 2007 | Nokia, Finland           | Campylobacter spp., Norovirus,<br>Giardia, Salmonella spp.<br>Clostridium difficile, Rotavirus | 2 deaths           | 6,500               | cross-connection at<br>sewage<br>treatment plant |
| 2008 | Alamosa, CO,<br>USA      | Salmonella                                                                                     | 124<br>1 death     | 1300<br>20 hospital | vermin contamination of water storage tank       |
| 2008 | Adliswil,<br>Switzerland | pathogens not identified                                                                       | -                  | 180                 | cross-connection at<br>sewage<br>treatment plant |
| 2008 | Northampton,<br>England  | Cryptosporidium cuniculus                                                                      | 22                 | 422                 | Rabbit in backwash<br>tank                       |
| 2010 | Saratoga<br>Springs, USA | Campylobacter                                                                                  | 17                 | >333                |                                                  |

S. E. Hrudey, E. J. Hrudey; Common themes contributing to recent drinking water disease outbreaks in affluent nations. *Water Supply* 1 September 2019; 19 (6): 1767–1777.