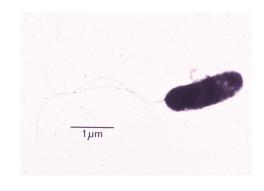


Evolution of antibiotic resistance in *Pseudomonas aeruginosa*

Iain Lamont
Department of Biochemistry and Webster
Centre for Infectious Diseases,
University of Otago, Dunedin

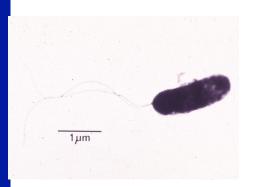


Pseudomonas bacteria

Very widespread in the environment

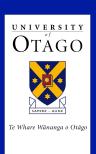
Many species are harmless

Some major plant pathogens eg.
 PSA

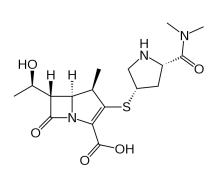


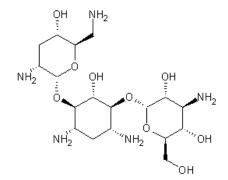
Pseudomonas aeruginosa

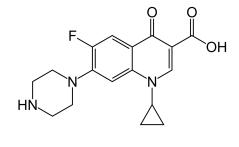
Common in moist environments


Infects animals eg. horses, dogs, cats, sheep

Infects patients with predisposing conditions – chronic and acute infections







Treating infection - antibiotics

• P. aeruginosa has intrinsic low-level resistance



 Antibiotic resistant strains are now a major problem

WHO Global priority list of antibiotic resistant bacteria



Priority 1: CRITICAL

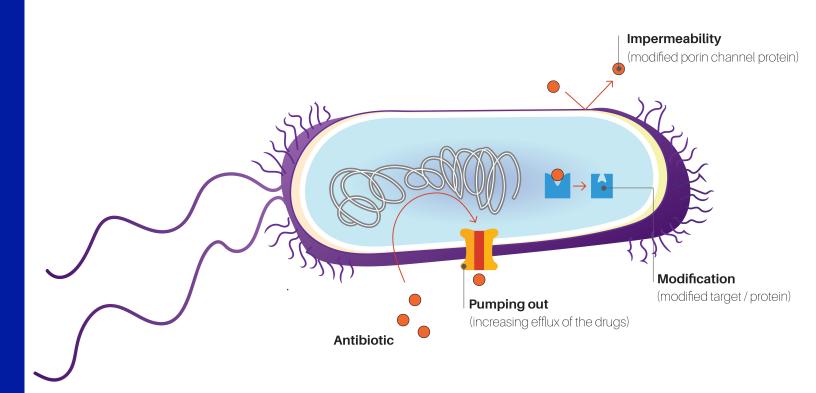
Acinetobacter baumannii, carbapenem-resistant

Pseudomonas aeruginosa, carbapenem-resistant


Enterobacteriaceae, carbapenem-resistant, 3rd generation cephalosporin-resistant

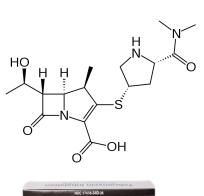
How do bacteria become antibiotic resistant?

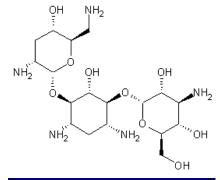
- Acquire antibiotic resistance genes from other bacteria
- Acquire mutations that confer resistance

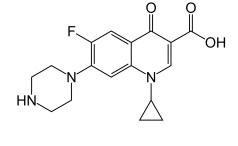


In *Pseudomonas* resistance arises mainly through mutations

 Mutations reduce uptake, increase efflux or alter target proteins

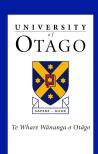

MUTATIONAL BASED MECHANISMS OF ANTIBIOTIC RESISTANCE

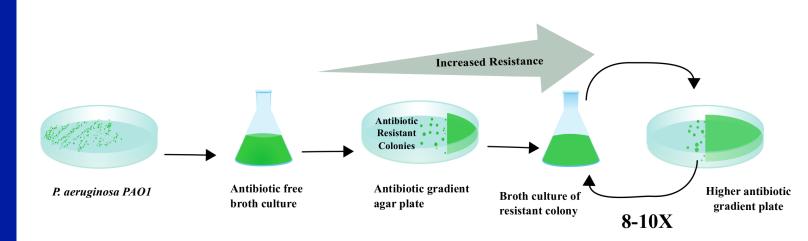




Major goal of our research programme

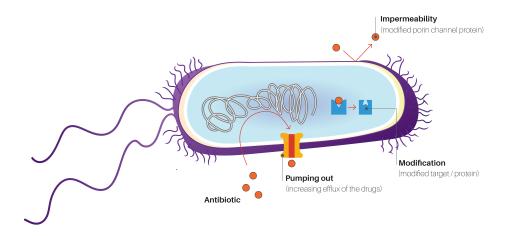
 To understand how *Pseudomonas* aeruginosa survives antibiotic treatment and causes infection

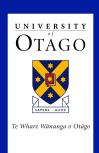



Example: obtaining a complete picture of mutations contributing to antibiotic resistance

Research strategy

- Evolve highly resistant mutants in the lab
- Use whole genome sequencing to identify the mutations conferring resistance

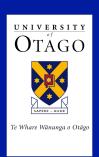




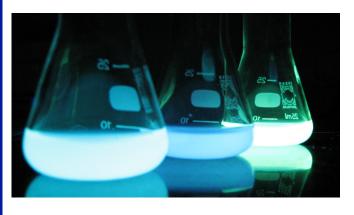
Results

- 15 mutants, at least 32-fold more resistant than wild-type
- Mutated genes are consistent with earlier studies

MUTATIONAL BASED MECHANISMS OF ANTIBIOTIC RESISTANCE

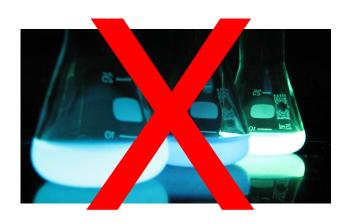


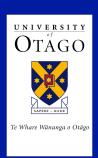
Clinical relevance?


- Analysed 185 clinical isolates for resistance alleles in lab mutants
- Mutations in our in vitro study also present in clinical isolates

Example two: bacterial physiology during infection

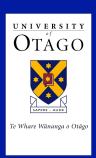
- How active are antibiotic resistance genes during infection?
- Infection: cystic fibrosis



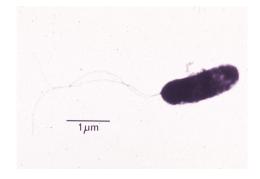


Approach: analyse antibiotic resistance gene activity IN PATIENT SPUTUM

Sputum obtained directly from patients represents infection in the lung



Outcome


Can quantify antibiotic resistance gene activity in infection (sputum)

WIDE variation in gene expression between patients

Conclusions

- Identified a number of genes not previously associated with resistance
- Mutations in lab-evolved bacteria reflect those that occur during infection
- Antibiotic resistance gene expression shows remarkable variation during infection

Big thank yous -

- Lois Martin
- Sam Wardell
- Attika Rehmann
- Annabelle Watts
- Cynthia Robson

- Cystic fibrosis patients and clinicians helping with our research
- Scott Beatson group (University of Queensland), Scott Bell group (QIMR, Brisbane), Craig Winstanley group (University of Liverpool)

