One Health and food safety and security in the 21st Century

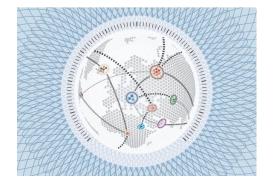
Nigel French
One Health Aotearoa, Dec 14th 2017, Wellington

Food

- Essential for survival
- One of our greatest pleasures
- In NZ:
 - Food production drives our economy and shapes our landscape
 - ...but public health issues arise from food production

Christchurch's pure drinking water could be contaminated due to farming

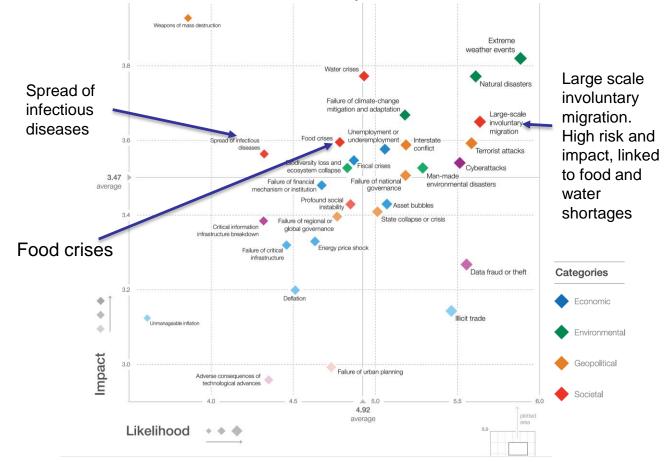
Going without food...

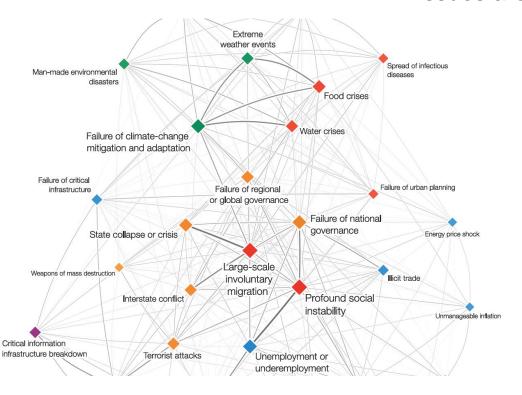


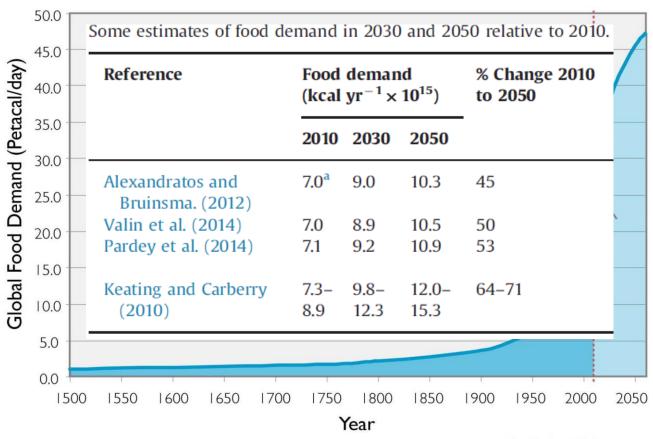
Slide from Martin Cole

Josette Sheeran, World Food Program

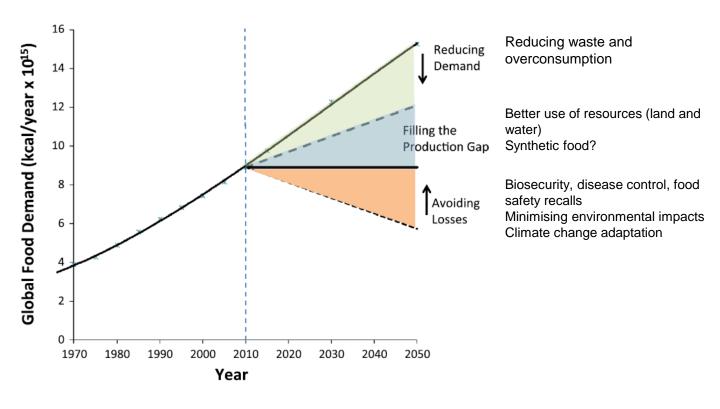
Source: www.datadiary.com.au Images various sources, Google Images




Insight Report


The Global Risks Report 2017

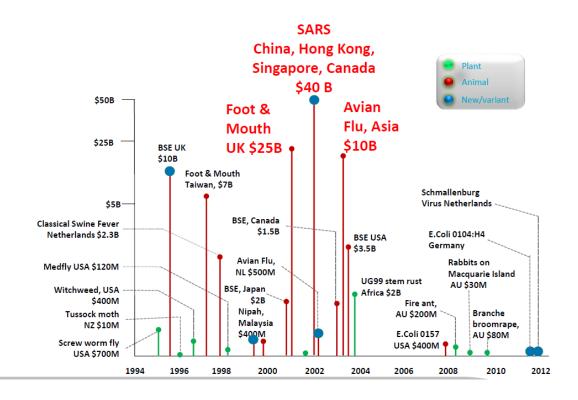
Global risks landscape and One Health



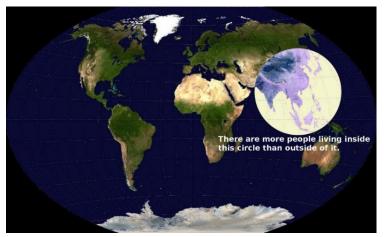
Issues are linked

Source: Brian Keating, CSIRO

Keating, B.A., Herrero, M., Carberry, P.S., Gardner, J. and Cole M.B. (2014) Food wedges: framing the global food demand and supply challenge towards 2050. (Global FoodSecurity (2014) 125–132.)


Zoonoses (many foodborne) animal to human infection in numbers

- >\$120Bn p.a cost of epidemics
- >200 zoonotic diseases of critical importance to human health
- 60% of human infectious disease agents zoonotic.
- 75% of Emerging infections: over zoonoses (80% bioterror agents)
- 2.3 billion human infections in developing countries caused by zoonotic diseases
- 2.2 million deaths
- >50,000 rabies deaths, >150 countries



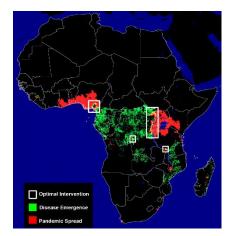
Economic impacts of (emerging) IDs can be large

Emerging Infectious Disease

- Human risk factors
 - Population density, urbanisation and growth
 - Increased global travel
 - Poverty
 - Changing dietary habits

3908 cases (800+ HUS) 41 deaths

Emerging Infectious Disease


- Domestic animal risk factors
 - Expanding production, globalisation
 - Poor biosecurity, inadequate animal health
 - Antimicrobial use
 - Poor food safety practices
 - Environmental pollution
 - Occupational exposure

Emerging Infectious Disease: why the increase?

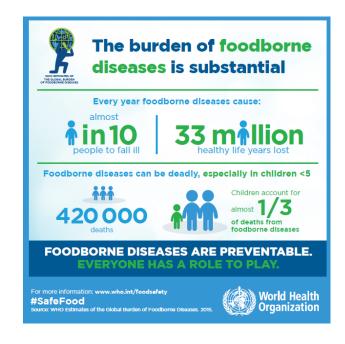
- Wildlife risk factors
 - Human encroachment
 - Habitat destruction
 - Climate change

Global biomass

Real and perceived risks cost money

Popeye spinach \$350M

Under cooked burgers \$160M


Fonterra fined \$183m over contamination scandal

Food safety

- Global burden of foodborne infections
- Outbreaks down but recalls up
- A One Health approach to reducing the burden of foodborne disease
 - Interdisciplinary, whole of food chain approach
 - Source attribution informing public health policy
 - Enteric zoonoses from the food production environment

Food safety and security in 21st Century

- Balancing food supply and demand
- Complex (and simple) supply chains
- Free Trade Agreements
 - Non-tariff barriers
- Emerging issues
 - Fresh produce
 - Fipronil in eggs in Europe

Food safety and security in 21st Century

Era of:

- Novel processing
- Novel foods
- Raw food
- Functional food
- Source attribution, traceability
- Rapid, cheap diagnostics
- Adulteration and bioterrorism
- Block chain technology

Food safety issues for all food sectors

- Primary production
 - –Hazard entering the supply/value chain
 - —Inter-sector pathways
- Supply chain management
 - -Propagation of hazards along chain
 - Integrity and trust in supply chain
 - –Reducing waste safely

Dr Miranda Mirosa, UoOtago

Food safety issues for all food sectors

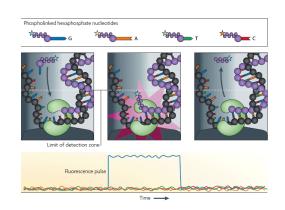
- Hazard detection technologies
 - –Need to be rapid, sensitive, cheap... and approved
- Traceability and provenance
- Climate change
- Food safety culture
- Markets and consumer perceptions
 - –Gene editing (perceived risk)
 - –Novel technologies (HPP, PEF...)
 - -Biocides

Dr Spock, SSE

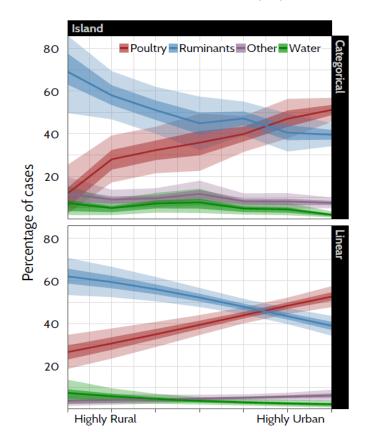
Controlling foodborne infection requires:

- Understanding how pathogens propagate along the food chain
 - -Systems approach
- Identifying the most important animal reservoirs / sources
 - –Food animals (and wildlife?)
- Determining drivers for pathogen emergence and spread

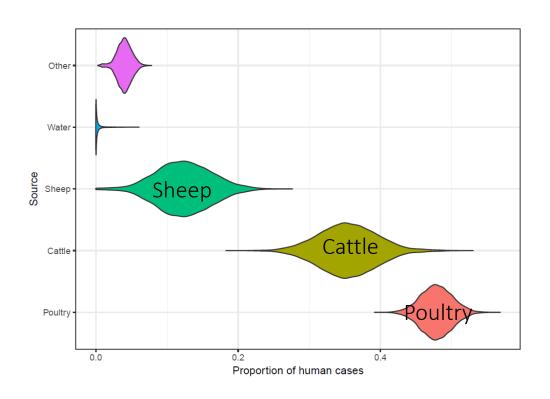
i.e. An interdisciplinary, One Health approach


Controlling zoonotic (foodborne) infections requires:

- Implementing the most effective control measures
 - -Regulation, verification, intervention
 - Public awareness / education / behaviour and food safety culture
- Adoption of new tools and technology... (genomics, novel diagnostics, models, social science, block chain technology...)

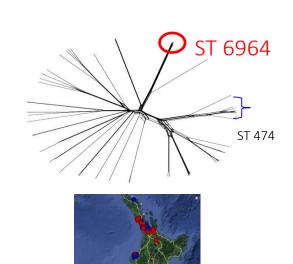

Pathogen genomics and food safety

- Identifying 'source' and transmission of pathogens
 - Along production chain
 - Processing environments
 - Time and origin of incursions
- Diagnostic test development
- Establishing normal and abnormal 'flora' in supply chain
- Evolution and virulence


Determining the source of human campylobacteriosis

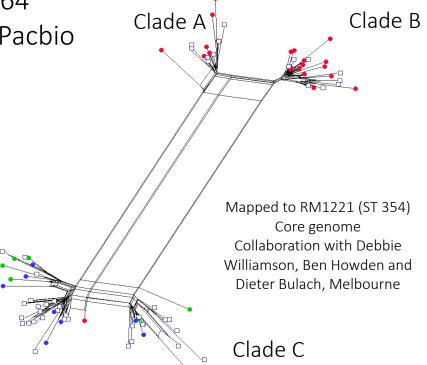
 Using MLST genotyping and evolutionary modelling

Jonathan Marshall, Jing Liao and Martin Hazelton


Distinguishing between ruminant sources: source attribution using whole genome MLST

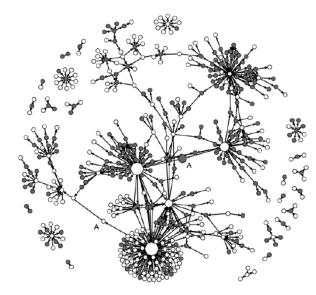
Emergence of resistant Campylobacter jejuni ST-6964

- Genetic basis for resistance to antibiotics?
- How long has it been in NZ?
- How has it been transmitted between poultry companies?
- What has driven the emergence?
- What is the main source of human infection?
- How is it evolving?


These can best/only be addressed by Whole Genome Sequencing

Sequencing of ST-6964 (N=230) including 4 Pacbio reference genomes

Red=Poultry A
Blue=Poultry B
Green=Poultry C
Squares=Human

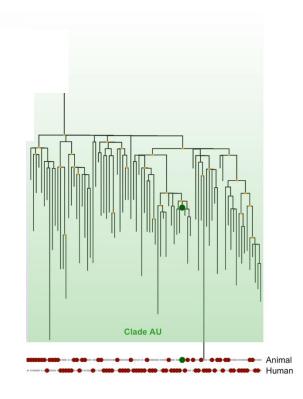

Clade D

Sabrina Greening poster

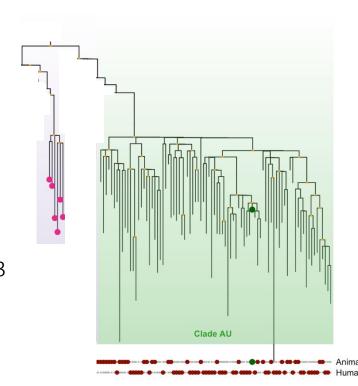
Key questions

- Genetic basis for resistance?
 - -tetO plasmid and C257T mutation in gyrA
- •How long has it been in NZ?
 - -~mid-late 2013.
- What drove the emergence?
 - -Reverse zoonosis?
 - –Limited tetracycline use in breeder flocks?
- How has it been transmitted between poultry companies?
 - -Shared parent and grandparent stock? Feed?
 - –Local spread seems likely
- Source attribution
 - All companies causing human infection

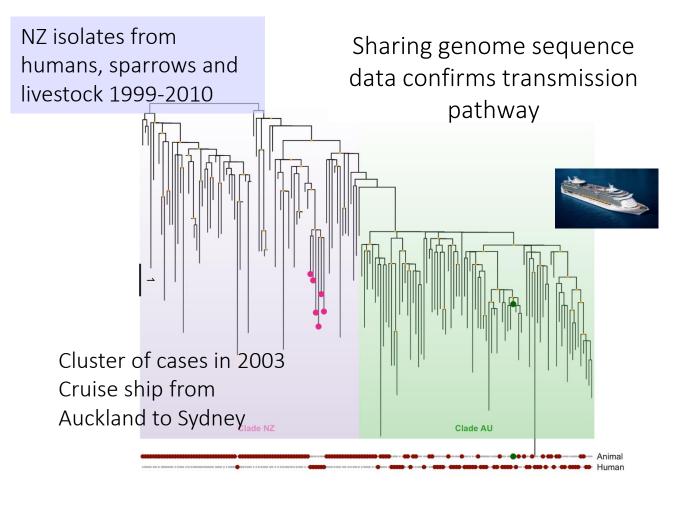
 $\textbf{Fig. 2.} \ \ \textbf{Social network analysis of feed-related contacts in the New Zealand}$


Poultry farm network (from Lockhart et al 2010)

Required cooperation and support from poultry industry

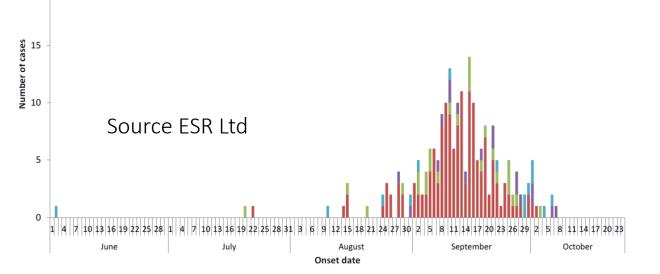

Salmonella DT160 in Australia

First locally acquired case in 2008. Associated with sparrows (predominantly in Tasmania).


Whole genome data from Dr Debbie Williamson, Melbourne Micro Diagnostics Unit

Salmonella DT160 in Australia

Cluster of cases in 2003


Need for routine application of whole genome sequencing? Yersinia outbreak in NZ in 2014

217 cases, 65 hospitalised

25

20

- "highly unlikely that the source of contamination will be identified"
- Fresh-produce complex supply chains
- Would real-time genome sequencing have helped?

Conclusions

One health, integrated approach essential for food safety and security:

- Food production impacts environmental health and public health
 - Foodborne, occupational and environmental zoonoses
 - Pollution and degradation
 - Antimicrobial resistance
 - Encroachment and EID
- Identification of 'source' and inter-host transmission of FB zoonoses
 - Crucial for effective public health policy
- Understanding hazards and risk requires whole of food chain approach and interdisciplinary research
- New technology helping to understand and control emerging risks

Acknowledgements

- mEpiLab team: particularly David Wilkinson, Ji Zhang, Jonathan Marshall, Patrick Biggs, Samuel Bloomfield, Anne Midwinter, Julie Collins-Emerson, Rukhshana Akhter, Lynn Rogers
- Carolyn Gates, Sabrina Greening, Jing Liao and Martin Hazelton
- ESR: Phil Carter, Brent Gilpin
- University of Melbourne: Debbie Williamson, Ben Howden, Dieter Bulach, Glen Carter, Sarah Baines, Anders Gonçalves da Silva
- University of Otago: Michael Baker
- MidCentral Public Health, MedLab Central
- Ministry for Primary Industries
- Poultry Industry Association

Funding

